
GCE AS MARKING SCHEME

SUMMER 2022

**AS (NEW)
MATHEMATICS
UNIT 1 PURE MATHEMATICS A
2300U10-1**

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

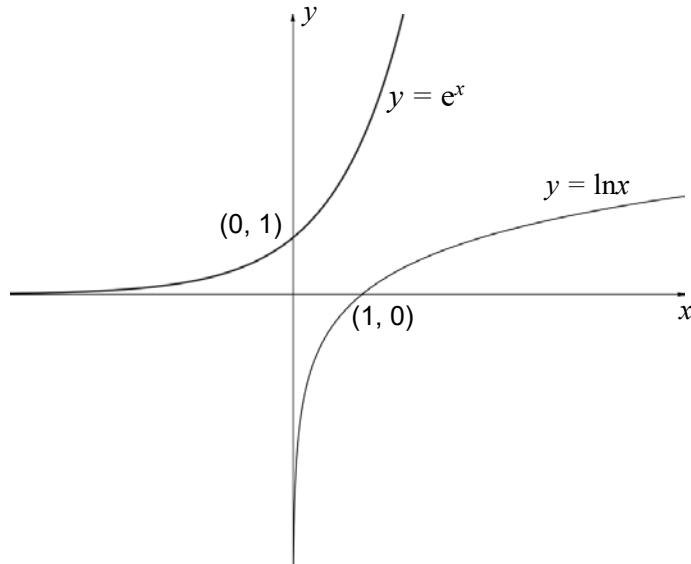
WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS MATHEMATICS
UNIT 1 PURE MATHEMATICS A
SUMMER 2022 MARK SCHEME

Q **Solution** **Mark** **Notes**

1 $y = \ln x$ B1 Allow $y = \log_e x$

May be seen on graph



B1 graph of $y = e^x$ and $(0,1)$

B1 graph of $y = \ln x$ and $(1,0)$

If B0 B0

SC1 both graphs correctly drawn,
but intercepts missing or incorrect

OR

SC1 correct intercepts but incorrect
graphs

Q	Solution	Mark Notes
2	$5\sqrt{48} = 20\sqrt{3}$	B1
	$(2\sqrt{3})^3 = 24\sqrt{3}$	B1
	$\frac{2+5\sqrt{3}}{5+3\sqrt{3}} = \frac{(2+5\sqrt{3})(5-3\sqrt{3})}{(5+3\sqrt{3})(5-3\sqrt{3})}$	M1 multiplying by conjugate
		M0 if multiplying by conjugate not shown
	$= -\frac{1}{2}(10 - 6\sqrt{3} + 25\sqrt{3} - 45)$	A1 for numerator
		A1 for denominator (25 – 27)
	$= -\frac{1}{2}(19\sqrt{3} - 35)$	
	$\text{Expression} = \frac{1}{2}(35 - 27\sqrt{3})$	A1 cao, any correct simplified form

Q	Solution	Mark Notes
---	----------	------------

3(a) Grad. of $L_1 = \frac{\text{increase in } y}{\text{increase in } x}$ M1

Grad. of $L_1 = \frac{-1-5}{3-0} = -2$ A1

Equ of L_1 is $y - 5 = -2x$ A1 any correct form
Mark final answer

$$y + 2x = 5$$

3(b) $y = \frac{1}{2}x$ B1 ft grad L_1
any correct form
Mark final answer

3(c) At $C, \frac{1}{2}x + 2x = 5$ M1 oe

$x = 2, y = 1$ A1 ft their (a) and (b)

C is the point (2, 1)

Area $OAC = \frac{1}{2} \times OA \times (x\text{-coord of } C)$ M1

Area $OAC = (\frac{1}{2} \times 5 \times 2) = 5$ A1 ft their 'x-coord of C'

OR

Area $OAC = \frac{1}{2} \times OC \times AC$ (M1)

$$OC = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$AC = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$$

Area $OAC = (\frac{1}{2} \times \sqrt{5} \times 2\sqrt{5}) = 5$ (A1) ft their coordinates of C

Q	Solution	Mark	Notes
---	----------	------	-------

3(d) Gradient of $L_3 = -2$ M1

Either

Equ of L_3 is $y - 2 = -2(x - 4)$ A1 ft their gradient of L_1
 any correct form
 ISW

OR

Equ of L_3 is $y = -2x + c$

$$2 = -2 \times 4 + c$$

$$c = 10$$

Equ of L_3 is $y = -2x + 10$ (A1) ft their gradient of L_1

3(e) Using similar triangles,

Area $ODE = 2^2 \times 5 = 20$ B1 ft their (c)

OR

Area = $\frac{1}{2} \times OE \times (x\text{-coord of } D)$

Area = $\frac{1}{2} \times 10 \times 4 = 20$ (B1)

Q	Solution	Mark Notes
4	$x^2 + 3x - 6 > 4x - 4$	
	$x^2 - x - 2 (> 0)$	M1 oe Allow 1 slip terms all collected on one side
	$(x + 1)(x - 2) (> 0)$	A1 si condone '=' ft their quadratic
	Critical values, -1 and 2	A1 si cao
	$x < -1$ or $x > 2$	A1 ft their critical values condone ',', or nothing A0 for 'and' Mark final answer

Solution

Mark Notes

5(a) $-x^2 + 2x + 3 = x^2 - x - 6$

M1

$2x^2 - 3x - 9 = 0$

A1

$(2x + 3)(x - 3) = 0$

$x = -\frac{3}{2}, 3$

A1 or one correct pair

A0 A0 if no workings seen

$y = -\frac{9}{4}, 0$

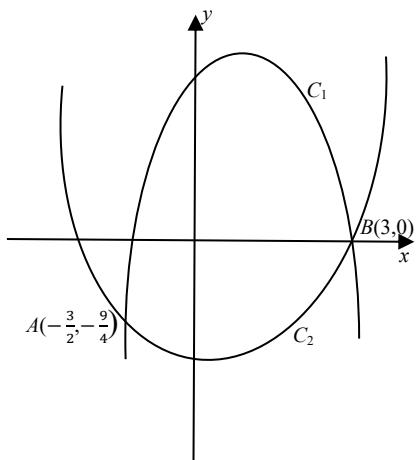
A1 all correct

$A\left(-\frac{3}{2}, -\frac{9}{4}\right) \quad B(3,0)$

or other way round

If 0 marks, award SC1 for sight of $(3,0)$

5(b)



M1 at least one quadratic curve

A1 one cup, one hill

A1 graphs all correct with correct points of intersection
FT points of intersection where possible

5(c) Area enclosed by curves to the right of the y -axis ft for equivalent diagram

B1 for 1 correct region

B1 for 2nd correct region
-1 for each additional incorrect region

Q	Solution	Mark Notes
---	----------	------------

6(a) Statement B is false

Two negative numbers:

Correct choice of numbers, eg

$$x = -25, y = -4, \quad \text{M1}$$

Correct verification, eg

$$x + y = -29$$

$$2\sqrt{xy} = 2 \times \sqrt{(-25) \times (-4)} \quad \text{A1} \quad \text{both substitutions}$$

$$2\sqrt{xy} = 20$$

Since $-29 < 20$ statement B is false. A1 oe

One positive number, one negative number:

Correct choice of numbers, eg

$$x = 1, y = -4, \quad (\text{M1})$$

Correct verification, eg

$$x + y = -3$$

$$2\sqrt{xy} = 2 \times \sqrt{(1) \times (-4)} \quad (\text{A1}) \quad \text{both substitutions}$$

$$2\sqrt{xy} = 2\sqrt{-4}$$

$2\sqrt{-4}$ is not real, statement B is false. (A1) oe

Q	Solution	Mark Notes
---	----------	------------

6(b) Statement A is true

Either

$$x^2 + y^2 \geq 2xy$$

$$x^2 - 2xy + y^2 \geq 0$$

M1

$$(x - y)^2 \geq 0, \text{ which is always true}$$

A1

Therefore, Statement A is true

OR

Consider $(x - y)^2 \geq 0$ (M1)

$$x^2 - 2xy + y^2 \geq 0$$

$$x^2 + y^2 \geq 2xy \quad (\text{A1})$$

Q	Solution	Mark	Notes
---	----------	------	-------

7(a) $A(2, 3)$ B1

A correct method for finding the radius,

$$\text{e.g., } (x - 2)^2 + (y - 3)^2 = 4^2 \quad \text{M1}$$

$$\text{Radius} = 4 \quad \text{A1}$$

7(b) At points of intersection

$$x^2 + (x + 5)^2 - 4x - 6(x + 5) - 3 = 0 \quad \text{M1}$$

$$2x^2 - 8 = 0 \quad \text{A1} \quad \text{oe or } 2y^2 - 20y + 42 = 0 \\ \text{All terms collected}$$

$$x = -2, 2 \quad \text{A1} \quad \text{or } y = 3, 7 \\ \text{or 1 correct pair}$$

$$y = 3, 7 \quad \text{A1} \quad \text{or } x = -2, 2 \\ \text{all correct}$$

$$P(-2, 3) \quad Q(2, 7) \quad \text{or } P(2, 7), Q(-2, 3)$$

7(c) Attempt to find, B , the midpoint of PQ M1 ft their P and Q

$$B(0, 5)$$

$$PB = \sqrt{(-2 - 0)^2 + (3 - 5)^2} = \sqrt{8} = 2\sqrt{2} \quad \text{A1} \quad \text{ft their } P \text{ and } Q$$

OR

$$PB = \frac{1}{2} PQ = \frac{1}{2} \sqrt{(-2 - 2)^2 + (3 - 7)^2} \quad (\text{M1})$$

$$PB = \frac{1}{2} 4\sqrt{2}$$

$$PB = 2\sqrt{2} \quad (\text{A1}) \quad \text{ft their } P \text{ and } Q$$

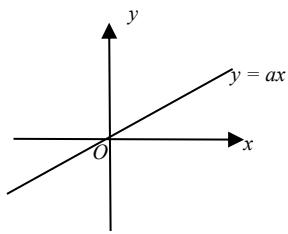
7(d) Area = quarter circle – triangle APQ M1

$$\text{Area} = \frac{1}{4} \times \pi \times 4^2 - \frac{1}{2} \times 4 \times 4 \quad \text{A1}$$

$$\text{Area} = 4\pi - 8 \quad \text{answer given}$$

Q Solution Mark Notes

8(a)



B1 Straight line through the origin, positive or negative gradient

8(b) Mary's pay = $120 \times \frac{2}{3}$ M1 Divide by 3

oe e.g. $3m = 120$

M1 oe \times by 2

Mary's pay = £80

A1
Unsupported answer of £80
award M1A1A1

8(c) $P = 1013 \times 0.88^{\frac{H}{1000}}$ B1

When $H = 8848$, $P = 1013 \times 0.88^{\frac{8848}{1000}}$ M1 e.g. $P = 1013 \times 0.88^H$
Allow $P = 1013 \times 0.988^H$

$P = 326.8828$ or 327 (units) A1 Allow answers in the range 324 to 330

Q	Solution	Mark Notes
9	$\text{Discriminant} = (2k)^2 - 4 \times 1 \times 8k$	B1 An expression for $b^2 - 4ac$
	$\text{Discriminant} = 4k^2 - 32k$	
	$\text{If no real roots, discriminant} < 0$	M1 May be implied by later work M0 if discriminant given in terms of k and x
	$k(k - 8) < 0$	
	$\text{Critical values, } k = 0, 8$	B1 si ft their quadratic discriminant if B0 awarded previously
	$0 < k < 8$	A1 ft their 2 critical values provided M1 awarded

Q	Solution	Mark Notes
---	----------	------------

10	$\ln 2^x = \ln 53$	M1 taking ln or log to any base of both sides.
----	--------------------	--

$x \ln 2 = \ln 53$	A1 use of power law
--------------------	---------------------

$$x = \frac{\ln 53}{\ln 2}$$

$$x = 5.727920455$$

$$x = 5.73$$

	A1 cao Must be to 2dp
--	-----------------------

Note:

- No workings M0
- $x = \log_2 53$, award M1A1

Q Solution Mark Notes

11(a) $\frac{dy}{dx} = 10 + 6x - 3x^2$ M1 At least one correct term

Attempt to find $\frac{dy}{dx}$ at $x = 2$ m1

Grad of tangent at $C = 10$ A1 cao

Equation of tangent at C is

$y - 24 = 10(x - 2)$ m1 oe

$y = 10x + 4$

D is the point $(0, 4)$ A1 cao

11(b) Area of trapezium $= \frac{1}{2}(4 + 24) \times 2 (= 28)$ B1 ft their $D(0,k)$, $0 < k < 24$

A under curve $= \int_0^2 (10x + 3x^2 - x^3) dx$ M1 attempt to integrate, at least one term correct, limits not required

$$= \left[5x^2 + x^3 - \frac{x^4}{4} \right]_0^2 \quad A1 \quad \text{correct integration, limits not required}$$

$$= (20 + 8 - 4) - (0) \quad m1 \quad \text{use of limits}$$

$$(= 24)$$

Shaded area = area (trap – under curve) m1

Shaded area = 4 A1 cao

Note: Must be supported by workings

Q	Solution	Mark Notes
---	----------	------------

11(c) $\frac{dy}{dx} = 10 + 6x - 3x^2$ FT their $\frac{dy}{dx}$ where possible

At stationary points, $\frac{dy}{dx} = 0$ M1

$10 + 6x - 3x^2 = 0$

$3x^2 - 6x - 10 = 0$

$x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times (-10)}}{6}$ m1 attempt to solve quadratic

$x = -1.08, 3.08$ or $\frac{3 \pm \sqrt{39}}{3}$ A1 any correct form

Required range is $-1.08 < x < 3.08$ A1

Alternative Solution

11(c) $f'(x) = 10 + 6x - 3x^2$ FT their $f'(x)$ where possible

For increasing function, $f'(x) > 0$ (M1)

$10 + 6x - 3x^2 > 0$

$3x^2 - 6x - 10 < 0$

$x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times (-10)}}{6}$ (m1) attempt to solve quadratic

$x = -1.08, 3.08$ or $\frac{3 \pm \sqrt{39}}{3}$ (A1) any correct form

Required range is $-1.08 < x < 3.08$ (A1)

Q	Solution	Mark Notes
12(a)	$f(x) = 2x^3 - x^2 - 5x - 2$	
	$f(-1) = -2 - 1 + 5 - 2 = 0$	M1 one use of factor theorem
	$(x + 1)$ is a factor	A1 oe
	$f(x) = (x + 1)(2x^2 + px + q)$	M1 at least one of p, q correct
	$f(x) = (x + 1)(2x^2 - 3x - 2)$	A1 oe (see note below*) cao
	$f(x) = (x + 1)(2x + 1)(x - 2)$	m1 coeffs of x^2 multiply to give 2 constant terms multiply to their q or formula with correct a, b, c
	$x = -1, -\frac{1}{2}, 2$	A1 cao

Note:

- Answers only with no workings 0 marks
- * $f(x) = (x - 2)(2x^2 + 3x + 1)$
- * $f(x) = (2x + 1)(x^2 - x - 2)$

12(b) $\cos(2\theta - 51^\circ) = 0.891$

$2\theta - 51^\circ = 27^\circ, (-27^\circ)$ B1

$\theta = 39^\circ$ B1

$\theta = 12^\circ$ B1

-1 each extra root up to 2

Ignore roots outside $0^\circ < \theta < 180^\circ$

Q	Solution	Mark	Notes
13	Required term = $\binom{5}{3}(2)^{5-3}(-3)^3$	B1	$\binom{5}{3}$ oe
		B1	$(2)^{5-3}$ oe
		B1	$(-3)^3$ oe
	Required term = $10 \times 4 \times (-27)$		
	Required term = -1080	B1	ISW

Q	Solution	Mark	Notes
---	----------	------	-------

14(a) Attempt to differentiate M1

$$f'(x) = 9x^2 - 10x + 1 \quad \text{A1}$$

$$9x^2 - 10x + 1 = 0 \quad \text{m1}$$

$$(9x - 1)(x - 1) = 0$$

$$x = \frac{1}{9}, y = -\frac{1445}{243} = -5.9465 \quad \text{A1} \quad \text{or } x = \frac{1}{9}, 1$$

$$x = 1, y = -7 \quad \text{A1} \quad \text{all correct}$$

$$f''(x) = 18x - 10 \quad \text{M1} \quad \text{oe ft quadratic } f'(x)$$

$$x = \frac{1}{9}, (f(x) = -5.9465) \text{ is a maximum} \quad \text{A1} \quad \text{ft their } x \text{ value}$$

$$x = 1, (f(x) = -7) \text{ is a minimum} \quad \text{A1} \quad \text{ft their } x \text{ value provided different conclusion}$$

Note: if $f''(x)$ is incorrectly found from their $f'(x)$, maximum marks M1A1A0

14(b)(i) Rewriting the equation

To give $f(x) = 3x^3 - 5x^2 + x - 6$ on one side. M1 oe

$$3x^3 - 5x^2 + x - 6 = -7,$$

$$2 \text{ (distinct roots)} \quad \text{A1}$$

14(b)(ii) To give $f(x) = 3x^3 - 5x^2 + x - 6$ on one side M1 oe

$$3x^3 - 5x^2 + x - 6 = -6.5$$

$$3 \text{ (distinct roots)} \quad \text{A1}$$

Note: 14b – 0 marks for unsupported answers

Q	Solution	Mark	Notes
15	$\frac{(x^2y)^3}{x^2y^2} \times \frac{9}{x^2y^2} = 36$	B1	one use of subtraction law
		B1	one use of addition law
		B1	one use of power law
	$4y = x^2$	B1	one for a correct equation after the removal of logs
	$\log_a\left(\frac{y}{x+3}\right) = \log_a 1$	(B1)	for use of the subtraction law if not previously awarded.
	$y = x + 3$	B1	or $x = y - 3$
	$4y = 4x + 12 = x^2$	M1	or $4y = (y - 3)^2$
	$x^2 - 4x - 12 = 0$		or $y^2 - 10y + 9 = 0$
	$(x + 2)(x - 6) = 0$		or $(y - 1)(y - 9) = 0$
	$x = -2, 6$	A1	cao or $y = 1, 9$ or 1 correct pair
	$y = 1, 9$	A1	cao or $x = -2, 6$ all correct
	$x = -2 \text{ and } y = 1, x = 6 \text{ and } y = 9$		

OR

$3(2\log_a x + \log_a y) - 2(\log_a x + \log_a y)$	(B1B1B1)	one for each use of laws
$+ \log_a 9 - 2(\log_a x + \log_a y) = \log_a 36$	(B1)	correct equation
$2\log_a x - \log_a y = \log_a 4$		
$\log_a y - \log_a(x + 3) = 0$		
$2\log_a x - \log_a(x + 3) = \log_a 4$	(M1)	solve simultaneously
$x^2 - 4x - 12 = 0$	(A1)	
$(x + 2)(x - 6) = 0$		
$x = -2, 6$	(A1)	
$y = 1, 9$	(A1)	
$x = -2 \text{ and } y = 1, x = 6 \text{ and } y = 9$		

Q	Solution	Mark Notes
16(a)	$ \mathbf{a} = \sqrt{2^2 + 1^2}$ $ \mathbf{a} = \sqrt{5}$ Required unit vector = $\frac{1}{\sqrt{5}}(2\mathbf{i} - \mathbf{j})$	M1 correct method A1
16(b)	$\theta = \tan^{-1}(\pm 3)$ $\theta = (\pm)71.6^\circ$ (288.4°)	M1 A1 Accept 72° or 288°
16(c)(i)	$\mu\mathbf{a} + \mathbf{b} = \mu(2\mathbf{i} - \mathbf{j}) + (\mathbf{i} - 3\mathbf{j})$ $\mu\mathbf{a} + \mathbf{b} = (2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j}$	B1 Mark final answer
16(c)(ii)	If parallel to $4\mathbf{i} - 5\mathbf{j}$, $(2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j} = k(4\mathbf{i} - 5\mathbf{j})$ $2\mu + 1 = 4k$ and $\mu + 3 = 5k$ Solving simultaneously $(k = \frac{5}{6})$ $\mu = \frac{7}{6}$	M1 or $k((2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j}) = (4\mathbf{i} - 5\mathbf{j})$ Both sides in terms of \mathbf{i} and \mathbf{j} A1 ft (c)(i) m1 any correct method A1 cao

Alternative solution

If parallel to $4\mathbf{i} - 5\mathbf{j}$,

$$\frac{2\mu+1}{\mu+3} = \frac{4}{5} \quad (\text{M1A1}) \text{ ft (c)(i)}$$

$$10\mu + 5 = 4\mu + 12 \quad (\text{m1})$$

$$6\mu = 7$$

$$\mu = \frac{7}{6} \quad (\text{A1}) \text{ cao}$$